Search results for "Potassium Channels"

showing 10 items of 94 documents

Dendritic and Axonal L-Type Calcium Channels Cooperate to Enhance Motoneuron Firing Output during Drosophila Larval Locomotion

2017

Behaviorally adequate neuronal firing patterns are critically dependent on the specific types of ion channel expressed and on their subcellular localization. This study combinesin situelectrophysiology with genetic and pharmacological intervention in larvalDrosophila melanogasterof both sexes to address localization and function of L-type like calcium channels in motoneurons. We demonstrate that Dmca1D (Cav1 homolog) L-type like calcium channels localize to both the somatodendritic and the axonal compartment of larval crawling motoneurons.In situpatch-clamp recordings in genetic mosaics reveal that Dmca1D channels increase burst duration and maximum intraburst firing frequencies during craw…

0301 basic medicineBK channelSodium ChannelsSK channel03 medical and health sciences0302 clinical medicineAnimalsDrosophila ProteinsLarge-Conductance Calcium-Activated Potassium ChannelsResearch ArticlesMotor NeuronsVoltage-dependent calcium channelbiologyGeneral NeuroscienceSodium channelCalcium channelfungiExcitatory Postsynaptic PotentialsAfterhyperpolarizationDendritic CellsAxonsElectrophysiological PhenomenaElectrophysiologyStretch-activated ion channel030104 developmental biologyDrosophila melanogasternervous systemLarvaSynapsesbiology.proteinCalcium ChannelsNeuroscience030217 neurology & neurosurgeryLocomotion
researchProduct

Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility

2018

Oligodendrocytes Control Potassium Accumulation in White Matter and Seizure Susceptibility.Larson VA, Mironova Y, Vanderpool KG, Waisman A, Rash JE, Agarwal A, Bergles DE. Elife. 2018 Mar 29;7. pii: e34829. doi: 10.7554/eLife.34829.The inwardly rectifying K+ channel Kir4.1 is broadly expressed by central nervous system glia and deficits in Kir4.1 lead to seizures and myelin vacuolization. However, the role of oligodendrocyte Kir4.1 channels in controlling myelination and K+ clearance in white matter has not been defined. Here, we show that selective deletion of Kir4.1 from oligodendrocyte progenitors or mature oligodendrocytes did not impair their development or disrupt the structure of mye…

0301 basic medicineKir4.1QH301-705.5seizureScienceMice TransgenicGeneral Biochemistry Genetics and Molecular BiologyWhite matterMice03 medical and health sciencesEpilepsyMyelin0302 clinical medicineSeizuresmedicineExtracellularAnimalsHomeostasisBiology (General)Potassium Channels Inwardly RectifyingProgenitor cellMyelin SheathMice KnockoutGeneral Immunology and MicrobiologyChemistryGeneral NeuroscienceQRGeneral Medicinemedicine.diseaseWhite MatterCurrent Literature in Basic ScienceOligodendrocyteCell biologymyelinOligodendroglia030104 developmental biologymedicine.anatomical_structureVacuolizationPotassiumepilepsyMedicineoligodendrocyteGene Deletion030217 neurology & neurosurgeryHomeostasiseLife
researchProduct

Molecular mechanisms underlying the neuroprotective role of atrial natriuretic peptide in experimental acute ischemic stroke

2018

Abstract Along with its role in regulating blood pressure and fluid homeostasis, the natriuretic peptide system could be also part of an endogenous protective mechanism against brain damage. We aimed to assess the possibility that exogenous atrial natriuretic peptide (ANP) could protect against acute ischemic stroke, as well as the molecular mechanisms involved. Three groups of rats subjected to transient middle cerebral artery occlusion (tMCAO, intraluminal filament technique, 60 min) received intracerebroventricular vehicle, low-dose ANP (0.5 nmol) or high-dose ANP (2.5 nmol), at 30 min reperfusion. Neurofunctional condition, and brain infarct and edema volumes were measured at 24 h after…

0301 basic medicineMAPK/ERK pathwayMalePotassium ChannelsSignaling pathwaysmedicine.drug_classMAP Kinase Signaling SystemAcute ischemic strokeDown-RegulationApoptosisBrain damagePharmacologyBiochemistryNeuroprotectionBrain Ischemia03 medical and health sciencesPhosphatidylinositol 3-Kinases0302 clinical medicineEndocrinologyAtrial natriuretic peptideNatriuretic peptideMedicineAnimalsDNA CleavageRats WistarReceptorAtrial natriuretic peptideMolecular BiologyProtein kinase BPI3K/AKT/mTOR pathwayInjections Intraventricularbusiness.industryCaspase 3Natriuretic peptide receptorsBrainInfarction Middle Cerebral ArteryStroke030104 developmental biologyNeuroprotective AgentsReperfusion InjuryK+ channelsmedicine.symptombusinessProto-Oncogene Proteins c-aktReceptors Atrial Natriuretic Factor030217 neurology & neurosurgeryAtrial Natriuretic Factorhormones hormone substitutes and hormone antagonists
researchProduct

A role for TASK2 channels in the human immunological synapse.

2020

The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, Kv 1.3 and KCa3.1 channels are recruited to the immunological synapse, increasing the extracellular K+ concentration. These processes are crucial as they initiate gene expression that drives T cell activation and proliferation. The T cell-specific function of the K2P channel family member TASK2 channels and their role in autoimmune p…

0301 basic medicineMaleCD3 ComplexImmunological SynapsesT cellCD3T-LymphocytesImmunologyCellGene ExpressionStimulationImmunological synapseAutoimmune Diseases03 medical and health sciencesJurkat CellsMice0302 clinical medicinePotassium Channels Tandem Pore DomainCell Line TumorGene expressionmedicineExtracellularImmunology and AllergyAnimalsHumansCells CulturedKv1.3 Potassium Channelbiologyβ-tubulin ; TASK2 ; immunological synapse ; dSTORM ; T cellCell MembraneDepolarizationIntermediate-Conductance Calcium-Activated Potassium ChannelsCell biologyMice Inbred C57BL030104 developmental biologymedicine.anatomical_structurebiology.proteinCalciumFemale030215 immunologyEuropean journal of immunologyReferences
researchProduct

Mechanisms involved in the increased sensitivity of the rabbit basilar artery to atrial natriuretic peptide in diabetes.

2017

Atrial natriuretic peptide (ANP) is a vasodilator with significant regional differences and controversial effects in the cerebral circulation, a vascular bed particularly prone to diabetes-induced complications. The present study has investigated how alloxan-induced diabetes modifies the mechanisms involved in the response of the rabbit basilar artery to ANP. ANP (10(-12) -10(-7) M) relaxed precontracted basilar arteries, with higher potency in diabetic than in control rabbits. In arteries from both groups of animals, endothelium removal reduced ANP-induced relaxations. Inhibition of NO-synthesis attenuated ANP-induced relaxation but this attenuation was lower in diabetic than in control ra…

0301 basic medicineMalemedicine.medical_specialtyEndotheliummedicine.drug_classRabbit basilar arteryVasodilationProstanoidsNitric OxidePotassium channelsDiabetes Mellitus ExperimentalGlibenclamide03 medical and health sciencesCerebral circulationAtrial natriuretic peptidemedicine.arteryInternal medicinemedicineBasilar arteryNatriuretic peptideAnimalsAtrial natriuretic peptidePharmacologyDose-Response Relationship Drugbusiness.industryDiabetesNitric oxideIberiotoxin030104 developmental biologyEndocrinologymedicine.anatomical_structureBasilar Arterycardiovascular systemProstaglandinsRabbitsbusinessReceptors Atrial Natriuretic Factorhormones hormone substitutes and hormone antagonistsAtrial Natriuretic Factormedicine.drugEuropean journal of pharmacology
researchProduct

Human leukocyte antigen-E mismatch is associated with better hematopoietic stem cell transplantation outcome in acute leukemia patients

2017

The immunomodulatory role of human leukocyte antigen (HLA)-E in hematopoietic stem cell transplantation (HSCT) has not been extensively investigated. To this end, we genotyped 509 10/10 HLA unrelated transplant pairs for HLA-E, in order to study the effect of HLA-E as a natural killer (NK)-alloreactivity mediator on HSCT outcome in an acute leukemia (AL) setting. Overall survival (OS), disease free survival (DFS), relapse incidence (RI) and non-relapse mortality (NRM) were set as endpoints. Analysis of our data revealed a significant correlation between HLA-E mismatch and improved HSCT outcome, as shown by both univariate (53% vs. 38%, P=0.002, 5-year OS) and multivariate (hazard ratio (HR)…

0301 basic medicineOncologyAdultMalemedicine.medical_specialtyTransplantation ConditioningAdolescentGenotypemedicine.medical_treatment610Hematopoietic stem cell transplantationHuman leukocyte antigen600 Technik Medizin angewandte Wissenschaften::610 Medizin und GesundheitArticle03 medical and health sciencesYoung Adult0302 clinical medicineCell Therapy & ImmunotherapyInternal medicineMedicineHumansTransplantation Homologousddc:610Potassium Channels Inwardly RectifyingSurvival analysisAllelesAgedBone Marrow TransplantationAcute leukemiabusiness.industryDonor selectionHistocompatibility TestingHazard ratioHistocompatibility Antigens Class IHematopoietic Stem Cell TransplantationHematologyMiddle Agedmedicine.diseasePrognosisSurvival AnalysisTransplantationLeukemiaLeukemia Myeloid Acute030104 developmental biologyTreatment OutcomeImmunologyFemalebusiness030215 immunology
researchProduct

Intracellular fluoride influences TASK mediated currents in human T cells.

2019

The expression of Kv1.3 and KCa channels in human T cells is essential for maintaining cell activation, proliferation and migration during an inflammatory response. Recently, an additional residual current, sensitive to anandamide and A293, compounds specifically inhibiting currents mediated by TASK channels, was observed after complete pharmacological blockade of Kv1.3 and KCa channels. This finding was not consistently observed throughout different studies and, an in-depth review of the different recording conditions used for the electrophysiological analysis of K+ currents in T cells revealed fluoride as major anionic component of the pipette intracellular solutions in the initial studie…

0301 basic medicinePatch-Clamp TechniquesTime FactorsPotassium CompoundsT-LymphocytesImmunologyMagnesium ChlorideMembrane Potentials03 medical and health scienceschemistry.chemical_compoundFluorides0302 clinical medicinePotassium Channels Tandem Pore DomainPotassium Channel BlockersImmunology and AllergyHumansCells CulturedKv1.3 Potassium ChannelActivator (genetics)ChemistryPipetteAnandamideElectrophysiology030104 developmental biologyMembraneBiophysicsCell activationFluorideIntracellular030215 immunologyJournal of immunological methods
researchProduct

EAST/SeSAME syndrome: Review of the literature and introduction of four new Latvian patients.

2018

EAST (Epilepsy, Ataxia, Sensorineural deafness, Tubulopathy) or SeSAME (Seizures, Sensorineural deafness, Ataxia, Mental retardation, and Electrolyte imbalance) syndrome is a rare autosomal recessive syndrome first described in 2009 independently by Bockenhauer and Scholl. It is caused by mutations in KCNJ10, which encodes Kir4.1, an inwardly rectifying K+ channel found in the brain, inner ear, kidney and eye. To date, 16 mutations and at least 28 patients have been reported. In this paper, we review mutations causing EAST/SeSAME syndrome, clinical manifestations in detail, and efficacy of treatment in previously reported patients. We also report a new Latvian kindred with 4 patients. In co…

0301 basic medicinePediatricsmedicine.medical_specialtyAtaxiaHearing Loss SensorineuralKCNJ10030105 genetics & hereditySensorineural deafnessKidney03 medical and health sciencesEpilepsyTubulopathySeizuresIntellectual DisabilityIntellectual disabilityGeneticsmedicineEAST syndromeHumansEye AbnormalitiesPotassium Channels Inwardly RectifyingGenetics (clinical)SeSAME syndromebiologybusiness.industryBrainmedicine.diseaseLatvia030104 developmental biologyPhenotypeEar InnerMutationbiology.proteinmedicine.symptombusinessClinical genetics
researchProduct

HCN1 mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond

2018

International audience; Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segre…

0301 basic medicineProbandMaleModels MolecularPotassium Channels[SDV]Life Sciences [q-bio]Medizinmedicine.disease_causeEpileptogenesisMembrane PotentialsEpilepsy0302 clinical medicineHyperpolarization-Activated Cyclic Nucleotide-Gated ChannelsMissense mutationChildGeneticsMutationMiddle AgedPhenotype3. Good healthTransmembrane domainclinical spectrum; epilepsy; HCN1; intellectual disability; ion channelintellectual disabilityChild PreschoolEpilepsy GeneralizedFemaleSpasms InfantileAdultAdolescentCHO CellsBiology03 medical and health sciencesYoung AdultCricetulusHCN1medicineAnimalsHumansGeneralized epilepsyGenetic Association StudiesAgedInfantmedicine.diseaseElectric Stimulationclinical spectrum030104 developmental biologyMutationion channelMutagenesis Site-DirectedepilepsyNeurology (clinical)030217 neurology & neurosurgery
researchProduct

The potassium channels TASK2 and TREK1 regulate functional differentiation of murine skeletal muscle cells.

2015

Two-pore domain potassium (K2P) channels influence basic cellular parameters such as resting membrane potential, cellular excitability, or intracellular Ca2+-concentration [Ca2+]i. While the physiological importance of K2P channels in different organ systems (e.g., heart, central nervous system, or immune system) has become increasingly clear over the last decade, their expression profile and functional role in skeletal muscle cells (SkMC) remain largely unknown. The mouse SkMC cell line C2C12, wild-type mouse muscle tissue, and primary mouse muscle cells (PMMs) were analyzed using quantitative PCR, Western blotting, and immunohistochemical stainings as well as functional analysis includin…

0301 basic medicinemedicine.medical_specialtyPhysiologyCellular differentiationMuscle Fibers SkeletalMedizinDown-RegulationBiologyCell LineMembrane Potentials03 medical and health sciencesMyoblast fusionMicePotassium Channels Tandem Pore DomainInternal medicinemedicineMyocyteAnimalsHumansPatch clampMuscle SkeletalMyogenesisSkeletal muscleCell DifferentiationCell BiologyPotassium channelCell biologyUp-Regulation030104 developmental biologyEndocrinologymedicine.anatomical_structurePotassiumC2C12American journal of physiology. Cell physiology
researchProduct